Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Coll Cardiol ; 75(8): 901-915, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130926

RESUMEN

BACKGROUND: Recurrent myocardial infarction (MI) is common in patients with coronary artery disease and is associated with high mortality. Long-term reprogramming of myeloid progenitors occurs in response to inflammatory stimuli and alters the organism's response to secondary inflammatory challenges. OBJECTIVES: This study examined the effect of recurrent MI on bone marrow response and cardiac inflammation. METHODS: The investigators developed a surgical mouse model in which 2 subsequent MIs affected different left ventricular regions in the same mouse. Recurrent MI was induced by ligating the left circumflex artery followed by the left anterior descending coronary artery branch. The study characterized the resulting ischemia by whole-heart fluorescent coronary angiography after optical organ clearing and by cardiac magnetic resonance imaging. RESULTS: A first MI-induced bone marrow "memory" via a circulating signal, reducing hematopoietic maintenance factor expression in bone marrow macrophages. This dampened the organism's reaction to subsequent events. Despite a similar extent of injury according to troponin levels, recurrent MI caused reduced emergency hematopoiesis and less leukocytosis than a first MI. Consequently, fewer leukocytes migrated to the ischemic myocardium. The hematopoietic response to lipopolysaccharide was also mitigated after a previous MI. The increase of white blood count in 28 patients was lower after recurrent MI compared with their first MI. CONCLUSIONS: The data suggested that hematopoietic and innate immune responses are shaped by a preceding MI.


Asunto(s)
Infarto de la Pared Anterior del Miocardio/inmunología , Modelos Animales de Enfermedad , Hematopoyesis , Anciano , Anciano de 80 o más Años , Animales , Infarto de la Pared Anterior del Miocardio/sangre , Femenino , Humanos , Leucocitosis , Macrófagos/fisiología , Masculino , Ratones , Persona de Mediana Edad , Parabiosis , Recurrencia , Estudios Retrospectivos
2.
Sci Rep ; 10(1): 5632, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221334

RESUMEN

Understanding complex biological systems requires the system-wide characterization of cellular and molecular features. Recent advances in optical imaging technologies and chemical tissue clearing have facilitated the acquisition of whole-organ imaging datasets, but automated tools for their quantitative analysis and visualization are still lacking. We have here developed a visualization technique capable of providing whole-organ tensor imaging representations of local regional descriptors based on fluorescence data acquisition. This method enables rapid, multiscale, analysis and virtualization of large-volume, high-resolution complex biological data while generating 3D tractographic representations. Using the murine heart as a model, our method allowed us to analyze and interrogate the cardiac microvasculature and the tissue resident macrophage distribution and better infer and delineate the underlying structural network in unprecedented detail.


Asunto(s)
Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Animales , Análisis de Datos , Conjuntos de Datos como Asunto , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , Microvasos/fisiología
3.
Nat Protoc ; 12(7): 1472-1497, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28686582

RESUMEN

The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.


Asunto(s)
Técnicas Citológicas/métodos , Polarización de Fluorescencia/métodos , Imagen Óptica/métodos , Preparaciones Farmacéuticas/análisis , Farmacología/métodos , Procesamiento de Imagen Asistido por Computador/métodos
4.
Sci Rep ; 6: 32985, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27609668

RESUMEN

Mitochondria, which are essential organelles in resting and replicating cells, can vary in number, mass and shape. Past research has primarily focused on short-term molecular mechanisms underlying fission/fusion. Less is known about longer-term mitochondrial behavior such as the overall makeup of cell populations' morphological patterns and whether these patterns can be used as biomarkers of drug response in human cells. We developed an image-based analytical technique to phenotype mitochondrial morphology in different cancers, including cancer cell lines and patient-derived cancer cells. We demonstrate that (i) cancer cells of different origins, including patient-derived xenografts, express highly diverse mitochondrial phenotypes; (ii) a given phenotype is characteristic of a cell population and fairly constant over time; (iii) mitochondrial patterns correlate with cell metabolic measurements and (iv) therapeutic interventions can alter mitochondrial phenotypes in drug-sensitive cancers as measured in pre- versus post-treatment fine needle aspirates in mice. These observations shed light on the role of mitochondrial dynamics in the biology and drug response of cancer cells. On the basis of these findings, we propose that image-based mitochondrial phenotyping can provide biomarkers for assessing cancer phenotype and drug response.


Asunto(s)
Biomarcadores/análisis , Monitoreo de Drogas/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Dinámicas Mitocondriales , Neoplasias/patología , Patología/métodos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Trasplante de Neoplasias
5.
PLoS One ; 7(4): e34427, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509302

RESUMEN

To date there is a lack of tools to map the spatio-temporal dynamics of diverse cells in experimental heart models. Conventional histology is labor intensive with limited coverage, whereas many imaging techniques do not have sufficiently high enough spatial resolution to map cell distributions. We have designed and built a high resolution, dual channel Born-normalized near-infrared fluorescence optical projection tomography system to quantitatively and spatially resolve molecular agents distribution within whole murine heart. We validated the use of the system in a mouse model of monocytes/macrophages recruitment during myocardial infarction. While acquired, data were processed and reconstructed in real time. Tomographic analysis and visualization of the key inflammatory components were obtained via a mathematical formalism based on left ventricular modeling. We observed extensive monocyte recruitment within and around the infarcted areas and discovered that monocytes were also extensively recruited into non-ischemic myocardium, beyond that of injured tissue, such as the septum.


Asunto(s)
Sondas Moleculares/metabolismo , Miocardio/metabolismo , Tomografía Óptica/métodos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Transporte Biológico , Catepsina B/metabolismo , Dextranos/química , Procesamiento de Imagen Asistido por Computador , Ratones , Sondas Moleculares/química , Infarto del Miocardio/metabolismo , Nanopartículas/química , Factores de Tiempo
6.
Opt Lett ; 35(7): 1088-90, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20364226

RESUMEN

Optical projection tomography is a new ex vivo imaging technique that allows imaging of whole organs in three dimensions at high spatial resolutions. In this Letter we demonstrate its capability to tomographically visualize molecular activity in whole organs of mice. In particular, eosinophil activity in asthmatic lungs is resolved using a Born-normalized fluorescence optical projection tomography and employing a near-IR molecular probe. The possibility to achieve molecularly sensitive imaging contrast in optical projection tomography by means of targeted and activatable imaging reporter agents adds a new range of capabilities for investigating molecular signatures of pathophysiological processes and a wide variety of diseases and their development.


Asunto(s)
Microscopía Fluorescente/instrumentación , Técnicas de Sonda Molecular/instrumentación , Tomografía Óptica/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...